- Acceptance-rejection method
library(rbenchmark)
alpha <- 4
beta <- 3
rejection <- function(f, M, g, rg,n) {
naccepts <- 0
result.sample <- rep(NA, n)
while (naccepts < n) {
y <- rg(1)
u <- runif(1)
if ( u <= f(y) / (M*g(y)) ) {
naccepts <- naccepts + 1
result.sample[naccepts] = y
}
}
result.sample
}
f <- function(x) 100*(x^(alpha-1))*(1-x)^(beta-1)
g <- function(x) 1
rg <- runif
M <- f((alpha-1)/(alpha+beta-1))
result <- rejection(f, M, g,rg, 1e5)
hist(result,freq = FALSE)
points(seq(0,1,0.01),dbeta(seq(0,1,0.01),alpha,beta),type = "l")
- Inverse transformation
U <- runif(1e5)
alpha <- 4
beta <- 3
b_rand <- qbeta(U, alpha, beta)
hist(b_rand, col="skyblue", main = "Inverse U", freq=FALSE)
points(seq(0,1,0.01),dbeta(seq(0,1,0.01),alpha,beta),type = "l")
- Let’s now timeit for two different method to generate beta distribution sample
benchmark("Acceptance-rejection" = {result <- rejection(f, M, g,rg, 1e5)}
, "Inverse-transformed" = {U <- runif(1e5)
alpha <- 4
beta <- 3
b_rand <- qbeta(U, alpha, beta)},
replications=5,
columns = c("test","replications","elapsed","relative","user.self","sys.self"))
- We confirm that for this scenario, Inverse transform method is faster than Acceptance-rejection method.
no | test | replications | elapsed | relative | user.self | sys.self |
---|---|---|---|---|---|---|
1 | Acceptance-rejection | 5 | 3.45 | 2.5 | 3.37 | 0.01 |
2 | Inverse-transformed | 5 | 1.38 | 1.0 | 1.37 | 0.00 |
However, this is not always true. For example, for generating incomplete beta distribution, Acceptance-Rejection method could be faster.
Comments